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Abstract—This paper presents a novel approach for solving
the Satisfiability problem by reducing its complexity. First, an
improved, ‘divide and conquer’version of the Apriori algorithm
is introduced. It consists in dividing the problem instance into
two or more if necessary, sub-instances and then in executing an
ameliorated version of the Apriori algorithm for extracting the
frequent variables appearing in the sub-instances.
These most frequent variables are grouped into clusters and the
corresponding problem are considered for resolution. Once done,
the clusters can be shown as new smaller instances that are
solvable separately using either the DPLL procedure or the BSO
algorithm according to the number of variables to be solved.

Index Terms—Mining Frequent Patterns, Apriori, Meta-
Apriori, Clustering, NP-Complete problems, Problem Solving,
Satisfiability Problem, Complexity

I. INTRODUCTION

ONE of the most important tasks of Data Mining[1] is the
reducing complexity of data while keeping the integrity

of the later.
Three kinds of treatment are used for this purpose, Clas-
sification and clustering which consist in dividing the data
into small groups according to a certain training data for
the classification, and according to the similarities between
the elements for the clustering. The third process being the
frequent patterns mining, which consists in extracting the most
frequent items repeated together.
In this work, we aim at reducing the complexity of the sat-
isfiability problem[2], the most known NP-Complete problem
that arouses the most interest of the computational complexity
community. The issue consists in finding an assignment to
the variables to satisfy an instance represented as a CNF
(Conjunctive Normal Form) Boolean formula.
There are two categories of solving approaches, the complete
and the incomplete methods[3]. The first guarantees to find
the optimal solution if it exists or proves that the problem
cannot have a solution if appropriate. These methods cannot
cope with large problem instances and would generate a
combinatorial explosion and timeout calculation whatever the
machine performance.
To get around these problems, the scientific community devel-
oped new methods based on approximation. These methods do
not guarantee to find a solution even if it exists.
These constrains motivate us to think about a preprocessing
-pretreatment- to execute before the resolution. This prepro-
cessing step consists in using a frequent mining patterns

to reduce the problem complexity by dividing it into sub
problems (clusters) that can be solved separately in a second
step, using a complete algorithm and an incomplete one.
The remainder of this document is organized as follows. The
next section presents some interesting works related to the
satisfiability problem and the Apriori algorithm. The satisfi-
ability problem is then introduced in the third section. The
fourth section is dedicated to the presentation of Bees Swarm
Optimization Algorithm. The fifth section is consecrated to
the Meta-Apriori algorithm, prior to presenting the Apriori-
Clustering resolution in the sixth section. The conducted
experiments and the obtained results are presented in the
last section. Conclusions are finally summarized and some
perspectives are suggested.

II. RELATED WORKS
Nowadays, several algorithms and solvers exist to get over

the satisfiability problem, namely SAT.
The first category of SAT solvers deals with complete
algorithms that are able to yield either a satisfying solution or
a proof that such a solution does not exist. One of the most
known and studied complete solver is the Davis-Putnam-
Logemann-Loveland(DPLL)[4]. This backtracking algorithm
recursively assigns a truth value to a variable and eliminate
all clauses that contains it until being able to check whether
the formula is satisfied. Several existing solvers are based on
the DPLL algorithm.
An extension of the DPLL is introduced in the Conflict
Driven Clauses Learning (CDCL)[3], in which a new clause
is learnt when a conflict occurs while assigning values to the
variables. Tens of CDCL based solvers exist nowadays[3].
In[5], the authors introduced the first parallel portfolio[6]
SAT solver using a multicore architecture, allowing a
communication between the four used cores (CDCL solvers)
through lockless queues. These solvers are configured
differently according to:

• the restart policy, using either a dynamic restart policy
depending on the average size of the two last back-jumps,
or an arithmetic one,

• the selecting heuristic, where they increase the random
noise of the Variable State Independent Decaying Sum
(VSIDS) heuristic to diversify the selecting process,

• the polarity using a progress saving politic, saving the
polarity of variables between conflict and back-jump
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level, and a statistic polarity according to the occurrences
of each literal (variable and its negation),

• the learning process, using the basic CDCL’s implication
graph[7] and introducing a novel arc, called inverse arc,
that takes into consideration the satisfied clause,

• and finally, the clause sharing, which allows the commu-
nication between the cores.

All of these cores will deal with the whole base of clauses
and try to solve it using different manner (configuration),
which can be very time consuming. It would be a better
choice to divide the problem so that the different solvers can
cooperate by solving the different parts separately and save
time.
The second category of solvers are based on incomplete
algorithms. Their principle is to learn the problem’s
characteristics in order to guide the search without covering
the whole search area.
One of the first and most studied incomplete algorithms is
the Stochastic Local Search (SLS)[8], such as the famous
GSAT. Firstly introduced in[9], the algorithm starts by
assigning a truth value to all the variables, then generates the
neighbourhood of the current solution by flipping the variables
one by one. The choice of the variable to be flipped is made
by selecting randomly an unsatisfied clause, and picking the
variable that maximizes the number of newly satisfied clauses
and minimize the number of newly unsatisfied clauses.
An extension of the GSAT was proposed in [10], named
WALKSAT, in which the choice of the variable to be flipped
is made by selecting from a random unsatisfied clause, the
variable satisfying the GSAT condition with a probability p,
and with a probability 1-p picks a variable randomly.Since
then a family of WALKSAT solvers were created[11]. As
other solvers based on SLS algorithm.
In[12], S. Cai et al. introduced a new two-mode SLS solver
that combines be- tween two flip strategy. The first one being
the CCA (Configuration Checking with Aspiration) heuristic,
which does not allow flipping a variable if its configuration
(neighbours) does not change since its last flip. And allow
the flipping of those whose score is significant (their flip
decreases the number of unsatisfied clauses significantly).
If these kinds of variables do not exist, the flip strategy
used is switched to the focused local search mode which
selects a variable from a random unsatisfied clause. This
solver has been combined with other solvers like glucose
CCAnr+Glucose[13], which was presented in the SAT’s
competition 2014, and so others.
However, visiting the neighbourhood of each variable and
counting the score of each variable at each step with the
probability to switch to a random mode after this process is
very time consuming.
In [14], the authors, being inspired by the Frankenstein’s
novel, introduced a solver which consists on a combination
of existing high performance SLS SAT’s techniques (solvers)
with some mechanism that they introduced, using an
automated construction process. The solver includes five
parts or blocks, where the first is used for diversification
-initializing selecting policy-. The three next parts are

consecrated to the resolution itself; WALKSAT’s based
solvers for the second part, dynamic local search (penalties
associated to the clauses) solvers for the third and GWSAT
(joining GSAT-WALKSAT) for the fourth part. The fifth
block is used to up to date data structures.
Even on this solver, selecting the solver to be used for
resolution, can be very time consuming because of the
diversity of problems instances.
Data Mining techniques were for the first time used for
solving SAT in[15][16], where the authors used clustering[1]
methods to reduce the problem instance into many groups
using an intuitive method[15], creating a cluster for every new
variable. A Genetic-K-Means where the clusters centres are
generated using the genetic algorithm[1], and the classification
is made using the K-means algorithm[1].
Many other Data Mining techniques exist, including Frequent
Patterns Mining which consists on finding the patterns (items,
variables, ...) that are repeated together. One of the most
known algorithms used for mining frequent patterns is the
Apriori Algorithm[1][17].
Introduced in[17], Apriori consists in finding the set of
k-Itemsets that occur the most. A set of itemsets candidates
is extracted to be validated by scanning the whole base which
is very time consuming.
In[18], the authors considered the item with the minimum
support, minimizing then the database scans and reducing the
runtime. They also used the FP-growth algorithm in order to
reduce the memory space.

III. THE SATISFIABILITY PROBLEM

Being one of the most studied NP-Complete problems, all
eyes are turned to the Satisfiability problem, for its complexity
and its impact on the whole NP- Completeness.
The Boolean Satisfiability problem[2], SAT, is to decide
whether or not there is a satisfying assignment to the set of
variables x making a Boolean formula (x) true. This formula
being in conjunctive normal form (CNF) that is a conjunction
of clauses, where each clause is a disjunction of literals, a
literal being either a variable or its negation. In other words,
find an assignment (true value to each variable) that satisfies
all the clauses in the same time. Reminding that a clause is
said to be satisfied (true) if and only if at least one of its
variables is satisfied (true for a positive literal and false for a
negative one).
The formal definition of the problem is shown in the following
instance and question pair:

• Instance: m clauses over n literals
• Question: Is there any assignment of variables that satis-

fies all the clauses?
Example:
Let consider the following set of variables V = {X1, X2,
X3} and the following set of clauses C = {C1, C2, C3, C4}
defined as follow:

- C1 = X1, X2
- C2 = X2, -X3
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- C3 = -X1, -X3
- C4=X1, X2, X3
Note that the ’-’means the negative form of the variable.

IV. BEES SWARM OPTIMIZATION FOR SOLVING
SAT

The Bees Swarm Optimization Algorithm (BSO)[19] is a
population-based search algorithm simulating the behaviour
of bees when looking for food[20]. In fact, Karl Von Fris -
1946- observed that it is through a specified dance that the
bees communicate the distance and the direction of the food
source. The richest the source, the vigorous the dance so that
when two sources of equal distance are found, the bees exploit
the most potential area.
By analogy to the animals (reign), the BSO algorithm works as
follow: First, an initial bee, named BeeInit generates a random
solution named Sref, from which a search space namely
SearchArea is determined using a diversification strategy. Each
bee considers a solution of this SearchArea as a starting point
to its local search and communicates the best solution found
in a table called Dance. The best solution from this table is
taken as the references solution (Sref) and the cycle restarts
until no better solution to be found.

Algorithm 1 Bees Swarm Optimization Algorithm for SAT
1: Bees : table of bees
2: Solution : Variables ; Solution ; Evaluation
3: Sref ←Random Boolean Solution
4: while non stagnation do
5: TL←Sref
6: SearchArea (Sref) : Random generation
7: for ( i = 0 ←Bees count) : assign a solution of

SearchArea to each bee do
8: Local search
9: Dance←Best local search

10: end for
11: Sref ←Best solution from Dance using fitness proce-

dure(attribute a point to the evaluation for each satisfied
clause)

12: end while

V. META APRIORI

The Apriori[17][1] Algorithm is the most popular algorithm
in data mining for extracting the frequent itemsets. It detects
from a set of transactions, the items that are repeated the most
together. It starts by extracting the singles frequent items to
then recursively self-join the resulting itemsets until no longer
itemset to be extracted (k-itemsets).
The Meta-Apriori algorithm[21] includes three steps; parti-
tioning step, Apriori step, and fusion step. The partitioning
step consists in dividing the database into two clusters or
more if necessary. This partitioning is made by classifying the
transactions according to the frequency of their items, having
as result, almost the same items in both of the clusters with
the same frequency. The Apriori step, as its name indicated, is
the application of an improved Apriori algorithm on previous

clusters. These improvements were introduced to reduce the
Aprioris time consuming, and consist in:

• A vertical representation for a better representation of
the database and the set of candidate itemsets, so that
the entry of the structure is the item (vari- able) and
the contents is the set of transactions (clauses) where it
appears.

• Validation of a candidate when its frequency is equal to
the support (the condition is satisfied).

• Elimination of the items that appear less than the min-
imum support, and the transactions containing a lesser
number of item than the current itemset size.

To end with the fusion step, where the itemsets of both of the
clusters (of all clusters if more than two) are joined.

Algorithm 2 Meta-Apriori Algorithm
1: Variables :
2: CS1, CS2 : sub-transaction base
3: Ci : ith itemsets candidates
4: Input :
5: TB: transaction base
6: MinSUp: minimum support
7: Output:
8: FPB: frequent patterns base
9: procedure DIVIDING(TB,CS1,CS2)

10: for i :0 to TB length do
11: CS1 ←TB[i] or CS2 ←TB[i] according to the

frequency of the items on both of CS1, CS2
12: Return CS1, CS2
13: end for
14: end procedure
15: procedure APRIORI(TB,FBP )
16: extract 1-itemset and validate
17: while (itemset to be extracted ) do
18: Ci= self join the itemsets (new candidates)
19: Validation(Ci)
20: i=i+1
21: end while
22: Return FBP
23: end procedure

VI. META-APRIORI CLUSTERING FOR SAT
SOLVING

In this section, we propose a novel algorithm for solving the
SAT problem, where data mining collaborates with a complete
resolution algorithm and incomplete one.
With the aim of reducing the problems complexity, the prob-
lems instance is divided into two groups (clusters) using, as
presented in the previous section, a frequency clustering, to
then execute the improved Apriori algorithm, giving as result
a set of k most frequent itemsets.
Two methods are then possible; the first method merges
(fusion) the itemsets of the two instances, on one unique
set of itemsets which is used for creating clusters by using
these itemsets as cluster’s centre (If two itemsets share more
than half of the elements, the two centres are merged). The
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problem’s instance is then classified -into these clusters- using
the Hamming distance[22] , so that an itemset is classified
in the cluster with which it shares the maximal number of
items. These clusters can be seen as new problem’s instances
which can be solved either by using the DPLL algorithm
or the BSO algorithm according to the number of variables
to be solved. The resulted solutions are then merged. The
second method follows a top-down schema. Contrarily to the
first, it does not merge the itemsets of both instances groups
but continues splitting the instances using the same process
as that described in the first method ( creating the clusters
using the frequent itemsets, and classify the two instances
separately). Once all clusters created, the resolution of each of
the clusters is made using the DPLL and the BSO algorithms.
The solutions obtained by all the clusters are then combined
to yield the general problem’s solution.
The following figure illustrates the two presented methods.

Fig. 1. META-APRIORI CLUSTERING FOR SAT SOLVING.

VII. EXPERIMENTS
To show the efficiency of the proposed approach, some

experimentations were conducted on an i7 2.40 Ghz 4Go
and the implementation on Microsoft visual studio CSharp
2013, and were conducted on some benchmarks which are
presented in the Table 1.

TABLE I
BENCHMARKS DESCRIPTION

Benchmark Solvability Number of variables Number of clauses
Benchmark1 [23] Unsolved 99 8691
Benchmark 2 [23] Solved 230 9975
Benchmark 3 [23] Solved 440 9291
Benchmark 4 [23] Solved 240 10409
Benchmark 5 [23] Solved 260 11276

IBM 7 [24] Solved 8710 39374
GALILEO 8 [24] Solved 58074 276980
GALILEO 9 [24] Solved 63624 307589

Table.1 describes the characteristics of each benchmark
[23] [24], either they are solvable or not, the number of
variables and clauses of each one. The sources from which
these benchmarks were obtained are detailed in the references.

Table2 represents the solving rates and time solving of the
Meta-Apriori Clustering DPLL-BSO vs the best time solver

TABLE II
SATISFACTION RATES AND SOLVING TIME FOR META-APRIORI

CLUSTERING VS THE BEST BENCHMARK’S SOLVER.

Benchmark Name Method Rate (%) Time (s) Best Time Solver (s) Best Solver
Benchmark1 1St Method 99, 61 37, 01

2Nd Method 99, 64 41, 35 - -
Benchmark 2 1St Method 99, 10 1, 63 372, 14 Solver 1[23]

2Nd Method 98,84 6,88
Benchmark 3 1St Method 97,71 2,2 2088,76 Solver 2[23]

2Nd Method 98,30 0,66
Benchmark 4 1St Method 99,05 20,1 1257,86 Solver 3[23]

2Nd Method 99,22 23,76
Benchmark 5 1St Method 99,20 23,29 233,091 Solver 4[23]

2Nd Method 99,27 27,66

[23] in the corresponding SAT competition. It shows a signif-
icant difference between Meta-Apriori Clustering DPLL-BSO
solving’s time and the best time solving of each benchmark,
which is due to Meta-Apriori Clustering that reduce signifi-
cantly the complexity of the problem’s instance, allowing an
important time saving. However, we can see that the problem’s
instance is not 100% solved.
Comparing, for example, the 3rd benchmark for which the
time solving of the best solver is about 2000s and the Meta-
Apriori’s time solving is about 2s which is 1000time less than
the best solver even if the rate is about 97%. This rate can be
handled by the use of a more efficient solver than pure DPLL
and BSO.
The aim of this paper is the time saving by reducing the
problem’s complexity using Data Mining techniques.

TABLE III
SATISFACTION RATES AND TIME CONSUMING BETWEEN TWO

CLUSTERING METHODS

Meta-Apriori Clustering-DPLL-BSO Method 2 BSO-DM+DPLL
Benchmark Name Rate (%) Time (s) Rate (%) Time (s)

IBM 7 199,11 13,98 93.77 24,25
GALILEO 8 99,06 617,97 97.65 1502,81
GALILEO 9 98,85 815,55 97.64 1620,47

Table 3, presents the rates and time consuming between
the Meta-Apriori Clustering DPLL-BSO and the BSO-DM-
DPLL[9]. These results, show that Meta-Apriori Clustering
DPLL-BSO gives much better results (satisfiability rate) than
the BSO-DM-BSO with time saving.

VIII. CONCLUSION

Throughout this paper, we proposed an approach based on
mining frequent patterns associated with a complete algorithm
and an incomplete one.
The proposed improvement of Apriori, Meta Apriori, is used
as a preprocessing by extracting all the variables that appear
together. The problem’s instance being divided into clusters
using the later itemsets, the problem’s complexity is lesser,
allowing the resolution of each of the clusters using either
a complete algorithm or an incomplete one according to the
number of variables to be solved. The later approach was
applied to the Satisfiability problem because of its importance
in the Artificial Intelligence community and the impact of
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solving such an important problem.
Many algorithms and solvers are proposed each year for
solving SAT. The later approach was tested and the results
of the experimentations show the impact of using frequent
patterns mining as a preprocessing for solving problem.
We believe that this approach would be more efficient when
used with a more efficient solver. For our future work, we
will integrate this method in a solver that have proven his
efficiency.
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